Conceptually similarPIERRE BERGERHyperbolic CosineSS26161082K0862Rights ManagedPIERRE BERGERHyperbolic TangentSS26161072K0861Rights ManagedPIERRE BERGERLeast Squares Exponential CurveSS26161142K0869Rights ManagedPIERRE BERGERHyperbolaSS26161022K0856Rights ManagedPIERRE BERGERHyperbolic SineSS26160742K0824Rights ManagedPIERRE BERGEREllipses and HyperbolasSS26161012K0854Rights ManagedPIERRE BERGEREllipsesSS26161032K0857Rights ManagedPIERRE BERGERHypotrochoidSS26160852K0836Rights ManagedPIERRE BERGERPolynomial CurvesSS26160912K0842Rights ManagedView AllView more with similar tones Three Hyperbolic FunctionsLicense type:Rights ManagedUnique identifier:SS2616106Legacy Identifier:2K0860Description:In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular, functions. The basic hyperbolic functions are the hyperbolic sine and the hyperbolic cosine, from which are derived the hyperbolic tangent, hyperbolic cosecant, hyperbolic secant, and hyperbolic cotangent, corresponding to the derived trigonometric functions.Credit:Pierre Berger / Science SourceSize:5171px × 3338px (~49 MB)Get PricingHow Will The Visual Be Used?ShareKeywords:analytic function-analytic geometry-cosine-curve-elementary special function-exponential-geometry-graph-hyperbolic-hyperbolic function-hyperbolic geometry-math-sine-tangentModel release:N/AParent folder:Adnet Lot 28 Packet 04